Enhanced comment feature has been enabled for all readers including those not logged in. Click on the Discussion tab (top left) to add or reply to discussions.
Feed Efficiency
Accurate feed utilization testing in beef cattle is dependent on collecting reliable and sufficiently precise measures of daily feed intake and an appropriate measure of body weight gain. Measurement of both phenotypes is subject to some degree of error. Therefore, much care should be given to the development and implementation of testing procedures that systematically minimize the errors associated with measuring these two components. Costs of feed data collection using automated systems are typically higher than most other traits and can be a barrier to obtaining large quantities of data. Therefore, prediction accuracy relies more on the precision of the instrumentation and the design of the feeding test.
Data collection for feed efficiency
BIF recommends that a 42-day test length is sufficient for collecting accurate feed intake data. However, the BIF recommends a longer period for measuring gain, and discusses alternative strategies in the Gain article. Recommendations for feeding trial design and procedures are provided in the Feed Intake article.
Genetic evaluation
Historically, measures of feed utilization incorporated both feed consumption and measures of body weight gain (I. e. feed-to-gain ratio)[1] [2] [3]; however, when expressed in a linear form (e.g. selection index) application of values for costs and returns results in outcomes more closely associated with net return (revenue – cost) and therefore a selection index considering both cow/calf performance, postweaning growth and carcass merit measures is likely optimum for the beef industry [4]. Application of either approach could result in genetic change in feed utilization. Regardless, for genetic improvement programs selection should be based on EPD (or EBV) resulting from multiple-trait genetic evaluation of feed intake [5][6]. BIF recommends that breeders improve efficiency using an economically optimal selection index that includes EPDs for feed intake and growth, rather than using gain alone, residual gain, residual feed intake, or feed/gain ratio..
Attribution
The contents of this article are a result of an ad hoc BIF committee with additions, from various authors including Snelling, Spangler, and Golden. This article is derivative of the original Guidlines wiki page Intake and Feed Efficiency which has been deleted.
References
- ↑ Koch, R. M., L. A. Swiger, D. Chambers, and K. E. Gregory. 1963. Efficiency of feed use in beef cattle. J. Anim. Sci. 22:486-494. doi:10.2527/jas1963.222486x.
- ↑ Dickerson, G. E., N. Kunzi, L. V. Cundiff, R. M. Koch, V. H. Arthaud, and K. E. Gregory. 1974. Selection criteria for efficient beef production. J. Anim. Sci. 39:659-673. doi:10.2527/jas1974.394659x.
- ↑ Berry, D. P., and J. J. Crowley. 2012. Residual intake and body weight gain: A new measure of efficiency in growing cattle. J. Anim. Sci. 90:109–115. doi:10.2527/jas.2011-4245.
- ↑ Nielsen, M. K., M. D. MacNeil, J. C. M. Dekkers, D. H. Crews Jr., T. A. Rathje, R. M. Enns, and R. L. Weaber. 2013. Review: Life-cycle, total industry genetic improvement of feed efficiency in beef cattle: Blueprint for the Beef Improvement Federation. Prof. Anim. Sci. 29:559–565.
- ↑ MacNeil, M. D., N. Lopez-Villalobos, and S. L. Northcutt. 2011. A prototype national cattle evaluation for feed intake and efficiency of Angus cattle. J. Anim. Sci. 89:3917-3923. doi:10.2527/jas.2011-4124.
- ↑ Thallman, R. M., L A Kuehn, W M Snelling, K J Retallick, J M Bormann, H C Freetly, K E Hales, Gary L Bennett, R L Weaber, D W Moser, and M D MacNeil 2018. Reducing the period of data collection for intake and gain to improve response to selection for feed efficiency in beef cattle, Journal of Animal Science, Volume 96, Issue 3, March 2018, Pages 854–866, https://doi.org/10.1093/jas/skx077